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1. Introduction 

Let c,(p) denote the maximal number of maximally (w.r.t, divisibility) standard 

monomials for a monomial ideal ( Wt , . . . , W,) in R=k[&,...,X,]. This quantity is of 

interest for Computational Commutative Algebra since it implies an effective version 

of Macaulay’s result that every ideal Z in Ii can be “co-generated” by finitely many 

functionals R ---f k, meaning that Z is the largest ideal contained in the kernels of finitely 

many mnctionals R -+ k [4,pp. 69 and 911. In the author’s Ph.D. thesis [l] it is shown 

that if Z has a Griibner basis consisting of p elements then I can be co-generated by 

c,(p) + 1 functionais R ----) k. This bound is sharp. 

In this paper we study c,,(p) and estimate its behaviour for fixed n and varying p. 

We establish that for n < 4 and p > ‘t, we have c,(p) = (n - 1 )( p - n)-t 1 and, in 

general, c,(p) = ~(p[~/~l) for fixed n. We also show that cd(p) = (p2 - 3p - 2)/2 for 

4 5 p < 12. 

There seems to be a relation to the Upper Bound Theorem (see [S, Theorem 8.23, 

p. 2541) which concerns the maximal number &t(p) of (n - 1)-faces of an n- 

dimensional polytope with p vertices. The above results suggest that c,(p) = fn- 1 (p)- 
1 might hold. However, we will show that cb( 13) = 63 < (13* - 3.13 - 2)/2 = 

~- 
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fs( 13) - 1, thereby invalidating this wishful relationship. We also conclude that, unlike 
_&_I (p), c,(p) is not a polynomial in p. 

We begin by introducing terminology and definitions. Let fV be the set of positive 
integers and No the set of nonnegative integers. The set & is a partially ordered set 
(poset) under the component wise order. 

Definition 1. A subset U 2 Nl; is a JiIter if x 2 u E U=+x E U for all n,u E fV& Like- 
wise D C fYl; is a co-filter if x 5 d E D=+x ED. For a fiber U of P$ define it to 
be the maximal elements of &\U. The elements of Out(U) are called outer corner 
points or corner points of U. 

Remarks. Clearly for x E Out(U) all x’ > x are in U, so one can picture x as a point 
which is “outside” the filter but lies in a “corner” formed by the members of the filter. 
This is why we use the word “out” for Out(U) and we call each x E Out(U) an “outer 
corner point”. Note also: 
- U is a filter of & if and only if US_ Nl C U. 
_ For a filter U of Nil;, Out(U) consists precisely of those points 2 E i%l satisfying 

~~U~d~+~i~Uforallj~{l,..., nt. This is the cham~te~~tion of Out we will 
mostly use. 

- For 1 E f+$, let C(Z) be the filter generated by I, that is the orthant i+ N;t. 
A subset G C U generates U if and only if U = Uj, E (; C(2). 

Recall the familiar combinatorial lemma of Dickson’s (see [3, pp. 163,189]): 

Lemma 2 (Dickson). Every jilter of N;5 is a finite union of orthants. Hence every 

jilter of IV; has only finitely many minimal elements. 

Definition 3. Let S$’ denote the set of filters of FV$ which can be written as a union 
of p or fewer or&ants. Define cn( p) E (0, 1, . . .) U {m} as 

(1) 

Looking at Fig. 1, we see a filter of !Vg generated by 5 elements (black dots) together 
with its 4 outer comer points (circles with dots in them). 

Denote the filter generated by Ert, . . . ,@‘I~ E N$ by (151 , . . . , T&,). 

Lemma 4. For n<4 andnlp we have c,(p)l(n- l)(P-n)+l. 

Proof. By Definition 1, we have for IZ = 1 that { 0) C Out{ (1, 2, . . . , p) ) and for n = 2 

that ((p-2,O),(p-3,1),..., (O,P-2))cOut(j(P- 1,O),(P-2,1),...,(O,P- l>)>, 
so for I? < 3 and n 5 p we have by Definition 3 c,(p) 2 (n - 1 )(p - n)+ 1. 

For n =3 we see that {(O,O,O)} cOut(((l,O,O),(O, l,O),(O,O, 1))) and hence 

c3(3)> 1. 
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Fig. I. An example of U E ‘37: 

Secondly we can see that for m 2 1 the set Out( ((0, 0, 2m+ I), (0, 2m+ l,O), 

(2i+l, m - i, m - i):i= 1,2 ,..., m)) contains the 2m+ 1 elements (0, 2m, 2m), 

(2i, 2m, m - i),(2j, m - j, 2m): i, j = 1, 2,. . . ,m of I$, and therefore c3(m+3) > 

2m+l. Hence cs(p)>2p- 5 for p>3. 0 

Proposition 5. For integers n,m, p,q > 0 we have c,+,(p+q) L c,(p)c,(q). 

Proof. Let iii,. . .,&,,?I,. . .,r”~ E Nt be such that {pi,. . . ,FK} is contained in 

Out((iii ,..., ii,)), and let Ci ,..., &t”i ,..., ?L~ IV;; be such that {?i ,..., fL} C 

Out((v” ,,..., iq). 

The set {(Fi,fj): 1 <i<K, 1 <j<L}GN; x IV’;; is now a subset of Out(((lli,h),... 

(ii,,O),(t-Qi) )...) (Q)))CNngx N;=N;t’“. From this we see that if en(p) 2 K and 

cm(q) >L then c,+m(p+q) 2K.L holds. Hence c,+,(p+q) > cn(p)cm(q). 0 

Recall that for a real number n, [x] denotes the largest integer 5 x. 

Lemma 6. For n > 1 and p 2 3 we have c,( [n/21( p+ 1)) > pln121. 

Proof. For n = 21 we get by Lemma 4 and Proposition 5 czl( I( p + 1)) 2 c2( p + 1)’ 2 p’ 

for all p > 1. For n =2Z+ 1 we get in the same way c2,+,(Z(p+ 1)) 2 c2(p+ I)‘-‘cs 

(p+l)>p’-‘(2p-3)>p’ for all ~23. 17 

Remark. If we fix n > 1 and look at c,(p) as a function of one variable p, then 

clearly c,(.) is an increasing function by definition. Lemma 6 can be used to show 

that for a fixed n the function c,(p)/p ~1 is bounded below by a positive integer (see 

summarized results in Theorem 19). 
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2. An upper bound for c,( p) 

Definition 7. For a filter U in FV$ we say that 2 E l+Jt is i-adjacent to U if for some 

iE{l,...,n} we have Z$!‘U and .?+ZiiEU. We will say that i is adjacent to U if 

there is an i E { 1,. . . , n} such that 3 is i-adjacent to U. 

Remark 8. Let #I E Ng. If i E N$ is i-adjacent to C(G), then xi + 1 = mi. 

If now 1,&,..., fi2, E Ng are such that i is i-adjacent to C(&) for all i, then the 

previous remark asserts that i = (ml I- 1,. . . , mnn - 1) and that hi,. . , &, are all distinct. 

With this in mind, we can easily get the following lemma. 

Lemma 9. For n > 1 we have c,(n) = 1 and c,,(p) = 0 for p < n. 

Remark. It follows from the definition of Out that Out(U) is contained in the union 

of the sets Out(V), where V ranges over the filters generated by all n-element subsets 

of {#ri,. . . ,r&}. Since each of these sets Out(V) has cardinality at most 1, Out(U) 

has cardinality at most p!/n!(p - n)!. A better bound will be found later in this 

section. 

For a fixed n E N define the map fi : Nz -+ No simply as e(Z) =xi, the ith com- 

ponent, and let 7ti,,,,ik : N: + NEpk be the projection where components il,. . . , ik are 

omitted. In a context where n is given, rc will throughout this paper mean the map 

% . 
n-l .N;;+N, . 

Lemma 10. For any jilter U & Ni;; we have the following: 
(i) lOut(U)l=Iq(Out(U))( for aIZiE{l,...,n}. 

(ii) Out(n(U)) fl rc(Out(U)) = 0. 
(iii) lout(U)1 + lOut(rc(U))I = Irc(Out(U)) U Out(7c(U))I. 

For the remainder of this paper, whenever the symbol U occurs, it will denote a filter 

generated by a p-tuple of elements written ml,. . . , i$;p; that is U = U/L, C(&) & N;t. 
Thus, whenever we specify elements hi,. . . , tip, this will be understood to specify U. 
Also II- will always mean U,cy’ C(&). If pf 1 points fii,. . . ,#z,+~ are given, then 

U will mean l_lzLl C(fii), and Uf will mean lJ,“T’ C(Gii). If we for some reason put 

primes or stars on the points 51,. . . ,$,,, say +i;‘1,. . . ,Gi> or fir,. . . ,kf, then U’ and U* 
will always mean lJ,!Y, C(&i) and @, C(&~) respectively. All this can be combined; 

for example, U*+ will mean lJ,ET’ C(&*). 

Lemma 11. If& , . . . , +iP E Ni are such that rnPn = maxi{mi,} then 
(i) Out( U-) c Out(U). 

(ii) rr(Out(U)\Out(U-)) & Out(7r(U-)). 

(iii) lOut( 5 JOut(U-)(+(Out(n(U-))I. 
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Proof. To prove the first statement, let 2 E Out( U- ). There is an i E { 1,. . . , p - 1) 

such that 2 is n-adjacent to C(riii). By Remark 8 x,, + 1 = mi, 5 mp,, so II $! C(&,) and 

therefore .? # U. Since U- C U we have 2 E Out(U). 

To prove the second statement let 2 E Out(U). We shall first show that z+ 61 E U- 
for all 1 < n, then deduce from this that if .? $Out(U-), we must have rc(?) E 

Out(x(U-)). There is an i~{l,..., p} such that 2 is n-adjacent to C(&i). By Re- 

mark8,wehavex,+1=mi,and,hence,m,,>x,.IfI~{1,...,n}and~+Z~EC(~~), 

then we get P,(_?+e”i) > P,(&,) = rnPn > x, = P,(i) and, hence, I= n must hold. So for 

?‘E Out(U), we have i$! U- and 

z++,E u- for all ZE{l,...,n - l}. (2) 

If in addition we assume 2 # Out( U-), then we have 

i+& E qGipi,>\u-, (3) 

since, otherwise, it would be in Out(U) by (2). Now because i $!C(l?l,), we get 

x, + 1 = rnpn by Remark 8 and this holds for all 2 E Out( U)\Out( U- ). 
Let 2 E Out(U)\Out( U-) and assume rc(z) E TC(U-). This means there is y E No 

such that (rc(z),y) E U-. Since ?=(rt(z),x,) 9 U-, and U- is a filter, y >x,, and 

hence there is a smallest integer z E {x,, + 1,. . , y} such that (rt(,?),z) E U- . Hence, 

there is an i E {l,.. .,p - 1) such that (rc(z),z - 1) is n-adjacent to C(&i). By 

Remark 8 we have z = mi,. By definition of z and our choice of mpn, we now have 

min=Z>.X,+l=m pn>min and hence z=x,+l. This implies .f+&=((n(Z),.z)~U-, 

which cannot be by (3). We therefore have for 2 E Out(U)\Out(U-) that n(z) $E’ 

x(V), and by (2), we get rc(z)+zl E TC(U-) for all 1 E (1,. ..,n - 1). Therefore, 

7t(.q E Out(rc(U-)). 

Finally, to prove the third and the last statement, we have by Lemma 10 and the 

second statement that 

lOut( = lout(u)\out(u-)l+lOut(U> n ouqu-)( 

I ~7c(out(u>\out(u->)I + /Out(U-)I 

< IOUt(7c(U-))I+lout(u-)l. 0 

Lemma 12. rf ~51,. . , ii& E N’;; are such that rnpn > mi, for all i < p, then rc(Out( U)) 
U Out(x(U)) is the disjoint union of the sets n(Out(U-)) U Out(n(U-)) and 

Out(n( U))\Out(n( u-)). 

Proof. Let 

A = n(Out(U)) u Out(7c(U)), 

B = 7c(Out(U_)) u Out(n(U-)), 

c = out(7c(u))\out(7c(u-)). 
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First let us show B 0 C = 8. Of the two terms whose union defines B, the first one is by 
Lemma 11 contained in n(Out( U)), which by Lemma 10 is disjoint from Out(rc( U)) 

and hence disjoint from C, while the second is disjoint from C by definition of the 
latter set. 

Let us show now that A 2 B u C. Clearly Out(z( U)) C [Out(n( U))\Out(n(Z.-))] U 
Out(n(U-)) 5 CUB = BUC. To show that ~(Out~~)) C BUC, note that ~(Out(U)) C 
[~(Out~U~)\~(~t(~-))] U z(Out(U-)) C ~~Out(~)\Out(U-)) u n(Out(U-)). By 
Lemma 11 we have w(OutCU)\Out(U-))COUt(71(t/-)) and, hence, we get that 
~(~t(~)~~B~BUC. So we have ACBUC. 

Let us finally show BU C CA. Clearly we have C CA. To show B 5 A note first that 
by Lemma 11 we have Out(V) C Out(U) and hence n(Out(U-)) C x(Out(U)) &A, 
so it only remains to show that Out(~(U-)) 2 A. Pick ii f Out(rr(U-)). We consider 
two cases: 

Case (i): eZ $!C(n(ri?,)). By our ass~ption ii E Out(n(U->) we have tY? &rr~(U-). 
Therefore we have G $! rc( U-) U C(n(&)) = rc( U). However, since ii E Out(x( U-)) 
we have for each ZE(~,..., n - 1) that ti+&~n(U-)Gn(U) and hence tEOut(n 

(V) CA. 
Case (ii): t? E C(X(&~)). In this case we shall show that U”~rr(Out(U)), thus estab- 

lishing that in both cases, ii~A. Let X = (ii, rnpE - 1). We will show that f E Outrun. 
By definition of 2 we have 2 $?J C($). If now 2 E U- then ii = n(2) E n(U-), which 
contradicts our assumption that zi E Out(rc(U-)). Hence I$ U- U C(r&,) = U. 

For Zf{l,..., a} we must show that P+ zf f U: If I= n, then since C E C(~(~~)), 

we have1+~~==++“=(~,m,,)fC(~~)CU. 
If ZE(l,..., n - 11, then we have iif& E a(U-) and hence G+& E ~(C(~~)) for 

some i < p. Since now ~+e”~=(ii+e”~,n+,, - 1) and Q,, - 1 >FTQ,, we have g+e”r E 
C(#rj) 2 u- c u. 

Thus, in this case where 2? f C(~(~~)), .? = (B, rnpa - 1) E Out(U) and hence ii = rc(z) 
E n(Out(U>) CA, as required. l3 

By induction on p 2 n - 1, we get from Lemma 12 the following corollary: 

Corollary 13. Let p 2 n - 1 and 51,. . . ,i& E N$ be such that 

P,(&)< ._. <P,ftit,_I)< ... <p,(&). (4) 

Fori~(n-2,..., p} let t/;:= u’,=, C(&), a~dfor i~(n--l,...,p} le~A~~Out(~(Uj))\ 
Out(n(Ui_l)). Zf U = U, is the$lter generated by all Gq then n(Out(U))UOut(rr(U)) 

= UIP,@_,Ai h w ere the union on the right is disjoint. 

Let tii 1,. . . , ri$, E Q. By the definition of Out, we see that each element of Out(U)\ 
Out(U-) must be i-adjacent to C($,) for some i, since otherwise, that element would 
be in Out(U-). Hence we have the following lemma. 

Lemma 14. Every point in Out(U)\Out(U-) is a~acent to C(lii,). 
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We now have the basic tools to get some more descriptive results: 

Lemma 15. maxLIE (IOut(U)I+lOut(71(U))I)=c,(p+l). 

Proof. Let & ,, . . . ,izp+, E kg. We may assume mp+l,, = maxi to hold. By 

Lemma ll(iii) we have lOut( 2 JOut(U)I+(Out(n(U))J for all U+~%p”,t, and 

hence c,(p+ 1) I maxuGT((Out(U)( + IOut(n(U))I). 

To prove the reverse inequality, we shall construct, for any fit,. . . , ri$ E NE, 

a point fii,+t such that the filter U+ generated by +I,. . . , hip+1 satisfies IOut( U+)l 2 

lOut( + lOut(x(U))l. Thus, letting &r , . . . ,fip range over all such p-tuples, the 

desired inequality follows. 

Let fir,...,&i,EN~ and let m= max{mi,: 15 i < P}. If in Out(U), then by 

Remark 8 we have x, + 1 = mi, 2 m for some i and hence 

x,Lm - 1 for all ZEOut(U). (5) 

Let &+t = (m + 1);: and hence U+ = ULT’ C(riii). We have by (5) that Out(U) n 

C(&,+,) = 0 and hence Out(U) fl U+ = 0, so by definition of Out we have 

Out(U)~Out(U+). (6) 

Let f : Ni-’ 4 Nt be the injective map defined by ii H (ii,m). Having now con- 

structed tip+, and f, we assert that Out(U+) contains the union of Out(U) and 

f(Out(n(U))); that this union is disjoint and that the image of f is disjoint from 

U+ is easily seen by (5) and the definition of f. To see that f(Out(rc(U))) is con- 

tained in Out( U+), note that for ii E Out(rt( U)), f(zi) is always n-adjacent to C(KzP+t ). 

To see that for ii E Out(x(U)) and 1 < IZ, f(E) is Z-adjacent to U+, choose an i such 

that ~2 is Z-adjacent to rt(C(Gii)). Then f(G) is I-adjacent to C(&i), and the assertion 

follows together with (6). Cl 

Remark. Let fit,..., #zP E IV: be such that lOut(U)l = en(p) and mp,, > mi, for all i. For 

m = maXi {min} and Kzi = (m + 1 )&, let U’ be the filter generated by riit , . . . , ri&~, ~3;. 

As we saw in the previous proof, we have lOut( 2 lOut( + IOut?t(U-))( 2 

PWW = C,(P). H ence, when considering a filter U with lOut( U)l = c,(p), we can 

assume KrP = (m + 1 )&, and therefore in particular, we can assume mP,, > min for all 

i # p, which is what we will do in the proof of our next theorem to come. 

By Lemma 15 and (1) we have 

c,tp+ 1>r4P)+c,-l(P). (7) 

Note that if, for fixed n, we think of c,, as a sequence, (en(O), c,( l), . . .), then (7) says 

that the difference sequence of the sequence c, is bounded by the sequence c,_ 1. So, 

for instance, if c,-1 can be bounded by a polynomial of some degree d, then c, can be 

bounded by a polynomial of degree d + 1. The next theorem will give a stronger result: 
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the difference sequence of c, is bounded by a constant multiple of c,,_z. This will then 
allow us to bound the sequence c, above by polynomials whose degrees increase by 
1 as n is increased by 2 and which, in fact, have the same degrees as do the lower 

bounds of Lemma 6. 

Theorem 16. FOP integers n > 2 and p 2 1 we have c,(p + 2) L: cn( P-t- 1 f + (n - 1) 

%-2t P). 

Proof. Since en(.) is finite we may assume we have &, . . . ,&+I E Nf; such that 

c,(p+2)= lout(U+)l +plt(n(U+))~. w e may assume mp+rn > mi, for all i 5 p. By 

Lemmas 10 and 12 we have 

Cn(P + 2) = /Out(U”)l + jout(7q+))i 

= jn(Out(Uf)) u out(~(~+)~l 

= In(Out(U>) u Out(n(U))l + ~out(n(u’>>\out(~(v>>~ 

= /Out(U)/ + ~Out(n(U))~ + ~out(n(v+))\out(~n(u))~ 

I GAP 4 1) + lout(n(u’))\Ou~(~(U))I. 

By Lemma 14, all the points in Out(~(Ui))\Out(~(U)) are adjacent to the or- 
thant C(n($,+l )). Hence if we let Bi be the set of points in Out(n( U+)) that are 
i-adjacent to C( x(ljip+r )), then we have Out( z( U+ ))\Out(n( U)) & User’ Bi and there- 

fore l~ut(~(U+))\Out(~(U))~ I Cyzr’ I&/. W e will show that I&l 5 c,-z(P) for all 

iE(l,.,.,n). 
Since ii E Bi is i-adjacent to C(Z(&~+I )), we have by Remark 8 that Ui = mp+ri - 1. 

ForiE{I,..., n- 1) and a E No let f${a) = Ni-’ x {a} x No-‘-’ C N;I-‘. By Remark 8 

we have Bi Ce(m,+li - l), which we shall simply write as 4. 
Let 6 E Bi. Since zi: f Out{@ U+)), we have in particular ii 6 z(U). Let j E { 1,. _ . , f, 

. . . . II- 1). We clearly have C(n(Gp+r))nP;:=O, so since ii+4fpi, we have i;+Z; $Z 
C(n(&,,t )). Since, on the other hand, G E ~ut(~(U+)~ and hence il + 6 E n(U+), we 
have that G++~n(tT+)\c( ( n Gp+t )) 5 n(U). We therefore have for all ii E Bi that 

ii St’ n(U) n 9, 

G+t;E~n(U)nfi foralljE{l,..., Z ,..., n-I>. 
(8) 

Note that for any a E No the map xi restricted to e(a) C tV;l-’ is injective. We get 
therefore from (8) that the following holds for all ii E &. 

xi(c) Sr %(4U) 0 8), 

Zi( ii) + a;-’ Eni(n(U)n&) for all EE(l,...,n-22). 
(9) 

One can easily get that for any a f No and any i E Ni;;f-’ the following holds in N$‘: 

TCi(C(l;) fl e(a)) = 
0 if a < bi, 

C(TQ(&)> if a 5 bi. 
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Therefore, since U = UF=, C(+) 2 &, we see that Hi = ni(n(U) n fi) is a union of 

at most p otthants in kJEe2. Since Bi C fi and ni restricted to fi is injective, we get 

by (9) that 

IBil <({CEN;f-2:C@Hi and ~“+E;-*EH~ for all l<Isn-2}) 

I %2(P). 

So we finally have (Out(n(U+))\Out(rc(U))I <(n - l)~,+~(p). 0 

Lemma 17. For n < 4 and p > n we have 

en(p) = (n - l)(p - n) + 1. (10) 

Proof. For n = 1 we get by definition cl(p) = 1 for all p > 1. 

For both n = 2 and n = 3, we have c,(n) = 1 by Lemma 9, as required. Moreover for 

n = 2, (7) tells us that the difference between successive values c,,(p) and cn(p + 1) 

is at most c,_l(p)=ct(p)=l=n-1, while for n=3 Theorem 16 tells us that these 

differences are at most (n- l)c,_2( p) = 2ct( p) = 2 = n- 1. So in each case, the function 

c, has the value given by (10) for p = n and does not increase faster than the left-hand 

side of (10). But Lemma 4 shows that in each of these cases, c, has at least the value 

given by (10); hence the lemma follows. q 

Corollary 18. For n > 2 and p L 1 we have 

c,(p) < (2p)‘“‘Y (11) 

Proof. ByLemma9wehave(11)foralln>2andp~{1,2}.ByLemma 17wehave 

c2( p) = p - 1 < (2p)‘2’2’ and cs( p) = 2p - 5 < (2~)‘~‘~). So we have (11) for n E {2,3} 

and p 2 1. We have in particular (11) if n+ p 5 6. We will proceed by induction on 

n+p.LetN>6begivenandassumewehave(ll)ifn+p<N.Letn>3andp~3 

be such that n+ p = N. Note in the calculation below that for any positive integer 

m we have 2[m/2] 2 m - 1 and [(m - 2)/2] = [m/2] - 1. Also we use the “binomial 

inequality” (x + 2)m > xm + 2mxm-’ for all real x > 0. We have now by Theorem 16 

G(P) 5 4~ - 1) + (n - ~)c,-z(P - 2) 

< (2p - 2)[n/21 + (n - 1)(2p - 4)[(n-2)/21 

< (2p - 2)‘@1 + 2 [;I (2p - 2)‘n’21-’ - 

< (2p)‘@l. 

Hence we have (11) for all n>2 and p> 1. 0 

By Lemma 6 one can easily show that 

c,(p) > ((n + l)[n/2])-[“‘21, 
p[“/2l - 
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for a11 p > PI 2 2. With this in mind together with Corollary 18 we have: 

Theorem 19. consider cn( p)for ~osit~ue integers p > n. There exist positive functions 

E, K : N -+ R+ of one variable n such that 

E(n)p[n/2’ < c,(p) < K(n)p[n’21 

for all p>n, which more compactly is denoted by en(p)= 8(pm’21). 

3. Technical results on outer corner points 

The main result we state in this section is the following lemma, which will be used 

in the last section in which we consider the case n = 4. 

Proposition 20. There are $1,. . . , Gip E Nz satisfying the following: 

- lOut( = Cn(PI. 

- {&,..*, $,} forms an antichain in N& 

- Writing %I,..., F%~ as column vectors in the following n x p matrix M, we have 

M = [l;ilI . . Itip] = [Dj(p - n + 1)1] where D is an n x (p - n) matrix, each row 
of which is a permutation of the positive integers 1,2,. . . , p - n and where I is the 
n x n identity matrix. 

Remark. We see in prices that for given n and p 2 n, there are ((p - n)! )” pos- 
sibilities for the matrix D. So in order to calculate c,(p), we “only” have to find the 
maximal IOut( U)( for these ((p - n)!)” possible matrices A4 in the above lemma. 

Many of the following lemmas are easy, and we just sketch the proofs. 

Lemma 21. If& ,..., 6$,,11;; ,..., ~~E~i”,andforaNZE{l,...,n)anda,bE(l,...,p} 

we have 

then we have that /Out(U)/ = lout(V)/. 

Proof (sketch). Since for real numbers x and y we have that x= y H x > y and 
x _< y, we get from (12) that equality holds on the right side if and only if it holds 
on the left. For _? E Out(U) there is for each k E (1,. . . , n} an al E (1,. . .) p} such that 
_? is I-adjacent to C(G,,). By Remark 8 i = (PI{&, ) - 1,. . .,Pn(&,) - 1). If we now 
let Z’==(P~(G~,) - l,..., P,(riiL,) - l), then we derive two things from (12). On the 
one hand, 2 H 2’ is a well-defined bijection, and, on the other hand, f E Out(U) H 
i’ E Out(U’). Hence we have the lemma. El 
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If KEN andZ=(xt , . . . ,x8), then kZ will always mean (kxt,. . . , kx,). For k E N and 
riit,...,&~ RJg let Uk= ugi C(kGi). 

Letting rii:=kfii in Lemma 21, we see that liil,...,~~,rit’,,...,tiib~N~ satisfy (12), 
and hence lout(U)/ = IOut(U The map ? H 5 defined in the proof of Lemma 21 
can in this case be given by the formula 

.q$}=kZ+(k-l)(l,l,..., 1). (13) 

Let B(Z, g) = {y E & : ii < j 5 &). For I E Out{U) and J E B(k&s&)), we have in 
particular 5 5 s&Z) E Out(Uk). But since Out(Uk) is the set of maximal elements of 
Nl\lJk, which is a co-filter, we have YE N;l\Uk; that is ; $5 Uk. 

Again, if jj E B(k&s&)), we have F 2 k? and therefore y + k& 2 k3 + kt?r = k(Z + 

Z,)fkUCU’. Hence, jj+k&E@ for all I~(l,._.,nf. 
We summarize in 

Lemma 22. For kE N and $,...,$,E N;1 we have: 

(i) The map sk : Out(U) --) Out ( Uk ) dejined in ( 13) is a bijectim. 

{ii} rf R E Out(U), then for every y E ~(k~,~~(~)), we have 

- YGUk, 
- 5 + k& E Uk fir all 1 E { 1,. . . , n}. 

Lemma 23. For n? 1 and p>n we have c,(p+ l)>c,,(p)+n- 1. 

Proof. Let PEN be such that p>n. Let Ijtt,...,IjP~ %$ be such that /Out(U 
c,(p). By Lemma 22 we also have \Out(U2)\ = c,(p). Since p 2 PI Out(U2) contains 
at least one point which by Lemma 22 has the form sz(Cz) for some ti E Out(U). If 
U’ = U2 U {s2(rii)}, then U’ is a filter generated by 261,. . . ,26$,,sz(r;i). We want to 
show that lOut( U’)\ 2 en(p) + n - 1. 

If i E 0ut(U2)\~~~(~)}, th en 5 # Ii2 and hence 2 @ U’. From this and the fact that 
Uz C U’, we get by definition of Out that 

Out( U2)\{s2(G)} c Out( U’). (14) 

For each i~{l,..., n) let Z;i=2%+& +s.-+g++.-+&. Note that the only 
even coordinate of 5i is P@i); hence the n points Zi are all distinct. Let S be the set 
of these n points. We will show that S 5 Out(V): Since S C B(2&, s2(&)), we have 
by Lemma 22 that S rl U2 = 0, and, since s2(fi) $ S, we have S n U’ I: 0. Again, by 
Lemma 22 and the definition of S, we also have that Zi +e”l E U’ for all i, 1 E { 1,. . . , n}, 

and hence 

s 2 Out( U’). (15) 

Finally, note that for all i E { 1,. . . , n}, we have that Zi f e’i = sz(Ci) # U2 and hence 

snOut(U2)=0. (16) 
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From (14)-(16) we get 

Remark. Basically, what we did in the above proof was to change one outer comer 

point of U2 into n distinct outer comer points by adding an orthant to U at that 

particular outer comer point. This method could be used to prove a more general 

result: For p 2 n let q be such that /Out(q)1 =c,,(p). For q 2 n and sufficiently large 

k, one can again change one outer comer point i of qk to c,,(q) distinct ones by 

adding q - n orthants appropriately in the cavity created by the y1 orthants that 2 

is adjacent to. In this way one can get c,(p + q - n) _> c,(p) + en(q) - 1 for all 

p>qzn. 

Proof Proposition 20. Let +zi,. . . ,6$, E N;t be such that JOut(U)I = c,(p). Assume 

for a moment that the fi are labelled in such a way that PI(~I ) F ’ . 5 Pl(rii,). Let 

Sri,... ,$,EEN~ bedefinedby~~=(i,~(rizi))foralliE{l,...,p}. Ifnow.ZEOut(U), 

let itE{l,..., p} be the least positive integer such that 2 is l-adjacent to C(+, ). In 

this case, it is not too hard to show that i’ = (if - 1, z(Z)) E N: is in fact a member 

of Out(U’). By Lemma 10, .? H i’ is injective, and hence lout(U)/ < IOut(U 

We have shown that if (Out( U)l = c,(p), th en we can assume the first coordinate 

of& , . . . ,ri$, to be precisely the integers 1,2,. . . , p, In the same way we can show the 

same for every other coordinate of riii, . . . ,T$. Hence there are 61,. . , Sip E Nz such 

that lOut(U)l=c,(p) and {P,(&i):i=l,..., p}=(l)..., p} for all 16(l)..., n} and, 

hence, 6, )...) G&(1 ,...) p}“. 

If now i E { 1,. . , p}, there must be an f E Out(U) adjacent to C(&i), since otherwise 

we would have Out(U)COut((riii,..., &i,...,Gp)) and hence c,(p)=lOut(U)/<c, 

(p - I), which would contradict Lemma 23. This fact that every C(&i) has at least 

one outer comer point adjacent to it implies that at most one coordinate of each Si can 

be the maximal number p. We can therefore further assume J&I,. . . , r.$ E { 1,. . . , p}” 

to be labelled in such a way that P~(lji~+l_~) = p for all 2 E { 1,. . . , n}. 

Now, consider the filter U* of N: generated by &I,. ,ri$_,,, pe”,, . . . , PC,,. Clearly 

U C U*, and moreover, since each i E Out(U) is Z-adjacent to some C(fii) for all 1, 

wegetbyRemark8thatZ$!ppt;j foralljE{l,...,n}.HenceOut(U)~Out(U*). We 

can therefore further assume tip+l_-n = (pE[) for all I E (1,. . . ,n}. 

We now have for 1~{1,..., n} andjE{l,..., p-n} that Pr(~G~ii)~{l,..., p- l} 

and ({Pl(fij):j= l,...,p - n}l=p - n. Therefore we can by Lemma 21 assume 

{Pl(fij):j=1,2 ,..., P-n}={1,2 ,..., P-n} for all IE{~ ,..., n}. Hence we have 

Proposition 20. 0 
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4. The case n = 4 

From Theorem 16 and Lemma 17 we already have 

c4(p + 1) - c4(p) I3 . Cz(P - 1) = 3(P - 2) 

for all p > 4. We will show that there is a smaller bound than this. First we must state 

the following lemma. 

Lemma 24. For a jilter U in Ni generated by p elements, there are at most p - 1 

points of Out(U) that are adjacent to a given octant C(G), where Si is one of the 

generators for U. 

Idea of proof. This statement is in fact easy to believe if we consider the example 

given in Fig. 2. If we imagine looking along the z-axis in F@, (the circled X-sign by 

the letter z in the figure means that the z-axis is perpendicular to and is pointing into 

the page), then we see 21 outer comer points adjacent to a given C(G), where G is 

one of the 22 generators. The idea of this lemma is that the octants that share outer 

corner points with C(G) lie in a “cycle” around C(h), with one outer comer point 

falling between each two successive members of this cycle. Hence there are the same 

number of outer comer points as elements in the cycle. 0 

From this lemma we deduce the following corollary: 

Corollary 25. For p > 4 we have c4(p + 1) 5 c4(p) + p - 1. 

Proof. By Lemma 15, there is a filter U of Nt generated by 61,. . . , tip E Ni such that 

lOut(U)( + (Out(rc(U))I =cd(p + 1). By Lemmas 10 and 12, we get for this filter U 

Fig. 2. Outer comer points of (I adjacent to C(G) in Ni. 
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that 

c4(p + 1) = lOut( + Iout(~(w)l 

= ~7c(Out(U)) u Out(7c(U))~ 

= I7c(Out(U-)) u OUt(7c(U-))I + lout(7c(u))\out(7c(u-))( 

5 C4(P) + lo~t(~(~))\o~t(~(~-))l. 

By Lemma 14, all points of Out(x( U))\Out(x( U- )) are adjacent to C(n($,)). By 

Lemma 24, there can be at most p - 1 such points, so the last expression in the above 

display is 5 cd(p) + p - 1. Cl 

Note that a function with value 1 at p = 4 and whose difference function is p - 1 for 

p 2 4, is (p2 - 3p - 2)/2. By this observation, the preceding corollary for the bound 

on the difference, and Lemma 9, we have the following: 

Corollary 26. For all p _> 4 we have 

c4(p) I (P2 - 3P - 2) 
2 . 

Moreover, if the equality holds for some p, then equality holds for all smaller p. 

Consider the filter U of k$ generated by the 12 points: 

(92% 0, O), (0,9,0, O), (0, 0,9, O), (O,O, 0,9), (6,7,4,1), (2,3,8,5), 

(5,g,3,2),(1,4,7,6),(g,5,2,3),(4,1,6,7),(7,6,1,4),(3,2,5,g). 

If 1 iS the monomial ideal of R=k[X,,X2,X3,&] corresponding to the filter U, and 

m is the maximal ideal of R generated by the indeterminates, then one can calcu- 

late dimk((m :Z)/Z) = [Out(U)/ using a computer algebra system (i.e. [2]), and find 

(Out( = 53 for this filter U. By Corollary 26 we therefore have 

Lemma 27. cq(p)=(p*-3p-2)/2for pE{4,5,...,12} 

In the same way, we get for the filter U of k$, generated by the 13 points: 

(lO,O, 0, O), (0, lO,O, O), (0,0,10, O), (0,0, &lo), 

(7,8,4,1),(2,4,9,5),(6,9,3,2),(1,5,8,6), 

(9,6,2,3),(5,1,7,7), (8,7,1,4),(4,3,6, g),(3,2,5,9), 

that /Out(U)/ = 63, and hence, again by Corollary 26, we have 

Lemma 28. ~(13) is equal to either 63 or 64. 

In order to determine c4(13) completely, we need a couple of lemmas. 



G. Agnarsson I Journal of Pure and Applied Algebra 117& 118 (1997) 3-21 17 

Lemma 29. Let U be ajlter of I$ generated by &I , . . . ,6+, E Ni that satisfy the last 

itemized condition of Proposition 20. Zf IOut( U)( = (p2 - 3p - 2)/2 then the following 

holds: 
(i) For any ig{1,2,3,4}, {rc~(~~):Z~{l,...,p}, l#p+i-4) forms an antichain 

in Ni. 

(ii) For any pair {i,j} of distinct elements of { 1,2,3,4}, {nij(ljt[) : l= 1,2,. . . p - 4) 

contains no 3 element chain in I@. 

Proof. By symmetry it suffices to prove the first statement for i = 1 and the second 

statement for {i, j} = {3,4}. In that case, in order to simplify index labelling, we will 

relabel hi,. . . , &, as follows: 

fil =(p - 3,0,0,0), 

%2=(O,p-3,&O), 

fi3 = (O,O, p - 3, O), 

{Pi(&/):Z=4 ,..., p- l}=(l)..., p-4} for all iE{1,2,3,4}, 

$ =(O,O,O, P - 3) 

(17) 

such that (4) is satisfied. Up to the order of the &i, these assumptions imply the last 

itemized condition of Lemma 20 in the case n = 4. 

For iE{2,..., p} let Ui = Ul=, C(fil). By our assumption in (17) and (4), Corollary 

13 now applies. By Lemmas 14 and 24, we have lOut(~(Ui))\Out(~(r/i_i))l <i - 1 

for i > 1, and hence by Lemmas 13 and 10 in this sequence, we get 

P--l 

(p2 - 3p - 2)/2 = 1 + C (i - 1) 
i=4 

P-l 

2 1 + C 10ut(~(ul))\out(71(ui_l ))I 

i=4 

P-1 

= U OUt(X(Ui))\OUt(7r(Ui-1)) 
i=3 

= J7c(out(up-1 )> u Out(~(Up-1 ))I 

= lOut(U,-1 >I + IOut(Wp-I ))I. 

Now, by Lemma 1 l(iii), we have for U = Up: 

IOut(U,-,)l + lout(7c(up--l >)I 2 IOWQI 
= lOut(U)l. 

(18) 

(19) 
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Now if /Out(U)1 = (p2 - 3p - 2)/2, then we see that inequalities in (18) and (19) 

must be equalities. In particular, this condition on the inequality in (18) means that 

~Out(~(Ui))\Out(~(U~-~))l=j- 1 for each i~{4,...,p- 1). 

So in order to prove both the first and the second statement of Lemma 29, it suf- 

fices therefore to show that if either of the statements is false, then there exists an 

iE{4,..., p - 1) such that 

~~t(~(~))\Out(~(~-~))~ 5 i - 2. (20) 

Suppose the first statement is false; i.e. that {n(&) : i = 1,. . . p - 1) does not form an 

antichain. Therefore there are i, je { 1,. . ., p - 1) with i# j and rc(&) < ~(liij) w.r.t. 

the natural partial order of Ni. By our assumption on riir,. . . ,$,, we clearly have 

i,jE{4,..., p - l}. We consider the following two cases: 

Case 1: i<j. Here we have C(~(~~))~C(~(~i))~ n(&1) and hence ~(E$_r)c 

n(Uj_1). We have therefore rc(q) = rc(q_r ), which implies that Out(n(q))\ 

Out(n(&r))=0, proving (20). 

Case 2: i > j. Here we have C(rc(riij)) C C(X(hi)) and hence 

n(t.lf)= (j C(7c(&))= (J C(n(&)). 
f=l i=l,l#j 

We see that in this case n(Ui) is a filter of Ni generated by i - 1 elements. By 

Lemma 14 every point of Out(n(Ui))\Out(~(Ui-1)) is contained in Out(n(Ui)) and 

is adjacent to C(E(&)), which by Lemma 24 is at most i - 2, again proving (20). 

Before we go on to prove the second statement of Lemma 29, we will set forth two 

helpful lemmas that will only be used within this proof of Lemma 29. 

Lemma 30. Suppose CT,& ZE Nz are such that for every i E { 1,. . . , n} 

bi Iies strictly between Ui and Ci. (21) 

Then every point .T adjacent to both C(G) and C(E) is contained in C(6). Conse- 

quently, if such G, & and E are among the generators of a jilter U of N$ no point 
of Out(U) is adjacent to both C(G) and C(c”). 

Proof. Assume 2 is i-adjacent to 5 and j-adjacent to C. Then every coordinate of Z 

other than the ith and jth coordinates is 2 the coKesponding coordinates of both a” 

and c” and, hence, by (21) is also 2 the corresponding coordinate of b. Moreover, by 

(21), no coordinate of a” can equal the corresponding coordinate of E. Hence, by the 

definition of i-adjacent and Remark 8, i and j must be distinct. By the fact that it is 

i-adjacent to a”, 2 must have j-coordinate 2 that of G. Thus we have a, 5 xi = cj - 1. 
Since 6j lies strictly between aj and ci, it must be 5 cj - X =Xj. By the same ~g~ent 

with the roles of i and j interchanged, we likewise have bi 5 Xi, completing the proof 

that all coordinates of ,? majorize the corresponding coordinate of &; i.e. that 5~ C(g). 

The final assertion of the lemma holds because a member of Out(U) cannot belong 

to U, and hence in particular, cannot belong to C(i). C! 
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Lemma 31. Let Gil,. . . , . . . m,ENg and let UP = U and UP_, = U-. Assume there is 

a jE{l,..., p - 1) such that there is no point in Out adjacent to both C($,) 

and C(l;rj). If now 

Up” = fi C(+) and Uj_, = PC C(+) 
kl, i#j i=l, i#j 

then we have Out(U~)\Out(U~_~) C Out(U~)\Out(U~_, >, and t~e~e~~~e lout\ 
Out(U,_,)( < p - 2. 

Proof. Let EEOut(U,)\Out( UP-r ). By Lemma 14, i is adjacent to C(&) and hence 
not adjacent to C(gj). Therefore .Z E Out( Up). 

Note that, in general, if UC U’s U”, then from the definition of Out, we have 

Out(U) n Out(U”)cOut(U’); so, if gEOut(Up0_,), then ZEOut(U,) f? Out(U&)c 
Out( UP-r ), a contradiction. Hence we have the lemma. q 

Let us now go back to proving the second statement of Lemma 29. Let U as be- 
fore be the filter of Ni generated by %I,. . . , $ip satisfying the conditions in ( 17). If 
/Out( U)l = ( p2 - 3p - 2)/2 then we will show that M = {rrs~(&): i = 4,5,. . . , 
p - 1) C N; contains no 3 element chain in I+$. To do this assume that we do have 
a 3 element chain 

n34(@k) < x34(&j) < 7(34(h) (22) 

in M. By the first statement of Lemma 29, which we now have proved, we have that 

{x(%), x(Gj 12 x(&f 1) f orms an antichain in F$ and hence we have 

q(~i)>P3(~j)>P3(~ik). (23) 

We want to show that in this situation there is an I E {i,j,k} such that we have 
~Out(~(~))\Out(~(~_~))~ < I - 2. We have three cases to consider. Note that the 
numerical order of the indices i, j,k is significant because of the assumption (4). 

Case 1: j = max{ i, j, k}. Recall that we have fis = (0, 0, p-3,0) by the assumption in 
(17). By (22) and (23) we can apply Lemma 30 to the triple {5,&E} = {rc(lji& n(&i), 
Z(&j)}. Hence we have that there is no point in Out(z(q)) adjacent to both C(n(&j)) 
and C(n(&)). If 

and hence 

rL(vj”)= b C(n(Szr)) 
j-i 

and z(tio_r)= u C(n(&)), 
I=], if3 I=l, I#3 

then we have by Lemma 31 that lOut(~(~))\Out(n(L-l))( < lOut(n(v>)\ 
Out(rc( v_r ))I 5 j - 2, proving (20) in this case. 
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We will treat the cases i= max(i,j,k} and k = max{i,j,k} at the same time. So 
assume h = max{ i,j, k} where h E {i, k} and let h’ be the member of {i, k} other than h. 
By (22) and (23) we can apply Lemma 30 to {G,&E} = {~(~i),~(~j),~(~~)}. Hence 
there is no point in Out(n(ZJJ)) adjacent to both C(rc(&)) and C(rr(ljthr)), so if 

q== ; C(&[) 

h-l 

and u,O_, = U c(&), 
l=i, l#A’ f-i, l#h’ 

then we get as before by Lemma 31 that ~Out(~(~))\Out(~(~_~))~ I IOut(rr(~))\ 
Out(n(U$_,))l <h - 2, proving (20). Hence we have the lemma. Cl 

For our final conclusion, we also need the following “folkloric” lemma: 

Lemma 32. A sequence of length p of real n~bers contains a s~seque~ce of length 
[,,,$I which is either increasing or strictly decreasing. 

Using this we can prove 

Lemma 33. ffM C R3 is a finite set with p elements, such that fir some iE (1,2,3}, 

pi forms an a~tichain in R2, then there is a j E ( 1,2,3} such that Zj (M) con~~~~ 

a chain of r&i] elements in 0X2. 

Proof. By symmetry it suffices to show that if n(M) forms an antichain in lR2, then 
either ni(M) or a2(M) contains a chain of length [Jii] in R2. Assuming rc(A4) forms 
an antichain, we can then label the elements of M as {(a!, bt,cr) E R3: I = 1,2,. . . , p} 
where 

al <a2< ... <a,, (24) 

b, >bZ> ..’ >bP. (25) 

Consider the finite sequence rZ = (cl, . . . , q,) of real numbers. By Lemma 32 c” contains 

a subsequence of length Ifi1 which is either increasing or strictly decreasing. 
If this subsequence of E is increasing, then, by (24), Q,(M) contains a chain in lR* 

consisting of r&T] elements. 
If this subsequence of c” is strictly decreasing, then by (25) ni(M) contains a chain 

in R2 consisting of [Jljl elements, which now completes the lemma. El 

By this we can finally get what we need to determine c4( 13): 

Lemma 34. cq( 13) is not equal to 64. 

Proof. Assume there is a fiber U E gi::’ such that /Out(U)] = 64. If U is generated by 

& ,...,&~EN: wemayassume byLemma20that [~ilI’..1~213]=[D110.Z4x4] where 
D is a 13 x 9 matrix each row of which consists of the positive integers 1,2,. . . ,9. 

Since 64 = (13’ - 3 . 13 - 2)/2, Lemma 29 applies to {lt34(+): i = 1,2,. . . ,9} C_ N& 
which therefore cannot contain any 3 element chain in Ni and must therefore contain 
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an antichain of 5 elements. Let M &{7?1t, . . . , riig } be the 5 element set such that 7134 (M) 

is the antichain mentioned. Applying Lemma 33 to Z(M), we have that either 7141 (M) 

or ~42 (M) must contain a chain consisting of [fil = 3 elements in N$, which again 

contradicts the second statement of Lemma 29. Our assumption that lout(U)\ = 64 is 

therefore wrong and we have proved the lemma. 0 

We now have the following theorem that summarizes what we have so far. 

Theorem 35. For p 2 4 we have 

c4(p)=(p2--p-2)/2 for p~{4,5,...,12}, 

c4( 13) = 63, 

c4(p)I(p2-3p-4)/2 for ~213. 

Proof. By Lemma 27 we have the first statement. Lemmas 28 and 34 yield the second 

statement. Since Q( 13) <( 132 - 3.13 - 2)/2, we have by Corollary 26 the third and 

last statement of the theorem. 0 

Remark. One sees clearly from the above theorem that Q(P) for p > 4 is not a 

polynomial in p, which by Theorem 19 could only have been of degree 2. 
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